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Language-users reduce words in predictable contexts. Previous research indi-
cates that reduction may be stored in lexical representation if a word is often
reduced. Because representation influences production regardless of context,
production should be biased by how often each word has been reduced in the
speaker’s prior experience. This study investigates whether speakers have a
context-independent bias to reduce low-informativity words, which are usu-
ally predictable and therefore usually reduced. Content word durations were
extracted from the Buckeye and Switchboard speech corpora, and analyzed
for probabilistic reduction effects using a language model based on sponta-
neous speech in the Fisher corpus. The analysis supported the hypothesis:
low-informativity words have shorter durations, even when the effects of local
contextual predictability, frequency, speech rate, and several other variables are
controlled for. Additional models that compared word types against only other
words of the same segmental length further supported this conclusion. Words
that usually appear in predictable contexts are reduced in all contexts, even
those in which they are unpredictable. The result supports representational
models in which reduction is stored, and where sufficiently frequent reduction
biases later production. The finding provides new evidence that probabilistic
reduction interacts with lexical representation.

1 Introduction

1.1 Probabilistic reduction

In speech production, language-users reduce words when they are predictable in the
local context, as well as when they are frequent overall (Lieberman, 1963; Whalen,
1991; Gahl, 2008). This reduction manifests as a broad array of articulatory and
acoustic effects, including differences in word and syllable duration, vowel disper-
sion and quality, plosive voice onset time, syllable deletion, and language-specific
segmental deletion, among others (Bell et al., 2003; Aylett and Turk, 2006; Baker
and Bradlow, 2009; Hooper, 1976; Bybee, 2002; Jurafsky et al., 2001; Everett et al.,
2011; Clopper and Pierrehumbert, 2008; Yao, 2009; Gahl and Garnsey, 2004; Bybee,
2006; Tily et al., 2009; Kuperman and Bresnan, 2012; Demberg et al., 2012; Moore-
Cantwell, 2013). These phenomena have been known for over a century (see Bell
et al., 2009, for a review), and are usually described together as the probabilistic
reduction hypothesis—words with higher probability are articulatorily reduced, for
a variety of local and global probabilistic measures.

The cause of probabilistic reduction is not fully understood, although it can be
accounted for in several different (and compatible) models of speech production. For
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example, such reduction may indicate that speakers actively manage their produc-
tions to balance audience-design considerations with articulatory efficiency (Lind-
blom, 1990). Under this theory, speakers hyper-articulate unpredictable words in
order to improve listeners’ chances of parsing words that they have low expectations
for. They hypo-articulate words that listeners can easily predict based on the con-
text, in order to save on articulatory effort. Smooth-signal or uniform-information-
density versions of this theory frame this behavior as speakers’ preference for keeping
a constant rate of information transfer (Aylett and Turk, 2004; Pluymaekers et al.,
2005; Levy and Jaeger, 2007). Speakers spend more time on unpredictable words,
which are informative, and relatively little time on predictable words, which provide
less new information.

An alternative account for probabilistic reduction is based in speaker-internal
processing factors (Bard et al., 2000; Munson, 2007; Bell et al., 2009). Under this
theory, words are activated more strongly by their phonological, semantic, and syn-
tactic associates. This facilitates retrieval and speeds production (Gahl et al. 2012,
cf. Baese-Berk and Goldrick 2009). For example, Kahn and Arnold (2012) show that
a linguistic prime causes speakers to reduce a word target even when audience-design
factors are controlled for, while a non-linguistic prime does not trigger reduction.

1.2 Is reduction stored in lexical representation?

An important question is whether probabilistic reduction is exclusively an online
effect, or whether it is also represented offline in the lexicon. It is generally argued
that unreduced citation forms have a privileged representational status (Ernestus
et al., 2002; Kemps et al., 2004; Ranbom and Connine, 2007). However, there
is evidence that reduced forms are also represented. Lavoie (2002) and Johnson
(2007) show that words with homophonous citation forms can have very dissimilar
distributions of reduction variants in conversational speech, and each word may
in fact have special reduced variants that are unattested for its homophone. For
example, [fô

"
] and [f@] are attested variants of for but not of four. This suggests

that reduced forms are to some extent word-specific, and therefore associated with
lexical representation, rather than created exclusively online during production.

Furthermore, language-users have a processing advantage for common reduced
forms of a word. This advantage is relative to how often the word is reduced (Con-
nine and Pinnow, 2006; Connine et al., 2008). For example, French genou [Z@nu] is
often realized in a reduced form [Znu], which lacks an audible schwa. On the other
hand, querelle [k@öEl] is more often realized with a full schwa in the first syllable. In
isolated word production, speakers are faster to produce forms like [Znu] than [köEl],
all else held equal, where [Znu] but not [köEl] is a common word-specific reduction
(Racine and Grosjean, 2005; Bürki et al., 2010). In lexical decision experiments,
Ranbom and Connine (2007) and Pitt et al. (2011) show that listeners are faster to
classify reduced forms like English gentle [dZER̃l

"
], with a nasal flap, than [dZEnPl

"
],

where the flap but not the glottal stop is a usual reduction of [t] in words like gentle.
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These findings indicate that reduced variants, when they are typical realizations of
a word, are likely stored in representation (Pitt, 2009; Ernestus, 2014).

There are at least three ways this storage might be implemented. First, storage of
reduction might involve multiple phonologically-abstract, categorical variants, which
include both unreduced and reduced forms of a word (as described above). Second,
individual productions of reduced words might be stored as exemplars with fine-
grained phonetic detail, including acoustic reduction (Pierrehumbert, 2002; Johnson,
2007). Third, reduction might be represented indirectly via changes to articulatory
timing relations that are lexically specified (Browman and Goldstein, 1990; Byrd,
1996; Lavoie, 2002).

Is probabilistic reduction stored in lexical representation? Reduction associated
with high contextual probability is standardly treated as an online phenomenon,
such as a kind of priming or else active management of information density, as in
1.1. The evidence discussed here suggests that reduction is stored when it occurs
often enough. Therefore, if a word is very often reduced because it typically oc-
curs in high-probability contexts, language-users may store this reduction in lexical
representation as well.

1.3 Informativity

In usage, some words almost always occur in predictable contexts, whereas others
are unlikely in each of the contexts that they occur in, even though they might
be relatively frequent overall. For example, the word current usually occurs in the
context of current events or the current situation, and is therefore usually predictable
in context. On the other hand, the word nowadays has roughly the same log-
frequency overall as current, but nowadays occurs in a wide variety of contexts (see
figure 1). Thus, on average, nowadays is more unpredictable in each of its contexts.

The average predictability of a word in context is its informativity (Cohen Priva,
2008; Piantadosi et al., 2011). Word informativity is formally defined as:

−
∑
c

P (C = c |W = w) logP (W = w | C = c) (1)

In equation 1, c is a context and w is a word type. Context is usually op-
erationalized simply as the n preceding or following words in an utterance. The
informativity of a word type is the averaged probability with which a word will oc-
cur given each of the contexts that it can occur in. This average is weighted by the
frequency with which the word occurs in each context. Usually-predictable words
(like current) have low informativity, because they tend to provide less new infor-
mation in actual communicative use. Usually-unpredictable words (nowadays) have
high informativity, because in actual use they tend to be surprising and informative.

Because low-informativity words are usually predictable, they are also usually
reduced. On the other hand, high-informativity words are rarely reduced. The
experiments described in 1.2 demonstrate that reduced forms of a word are more

3



0 −1 −2 −3 −4 −5 −6

Probability given following word (log−10)

Figure 1: Density plot showing the (log-10) probability of tokens of current (gray) and nowadays
(black) given the following word as context; predictability is higher to the left. Tokens of current
usually occur in predictable contexts, and so current has more density on the left (low informativity);
tokens of nowadays are usually unpredictable, and so nowadays has more density on the right (high
informativity). Tokens taken from Fisher; probabilities from COCA.

accessible if a reduced form is a typical realization of that word. If probabilistic
reduction is stored, reduction of low-informativity words should be more accessible
than reduction of high-informativity words. In a model that assumes abstract vari-
ants, reduced variants of low-informativity words should be retrieved and produced
in spontaneous speech relatively more often than could otherwise be explained. In
general terms, the prediction is that speakers should have a stronger bias for reduc-
ing a word if that word is usually reduced and usually predictable elsewhere. The
current study evaluates this hypothesis through an analysis of conversational speech
corpora.

1.4 Evidence for linguistic informativity effects

1.4.1 Sub-lexical informativity

There is evidence from language-specific phonetics that average contextual pre-
dictability does affect sub-lexical representation and processing. Using speech pro-
duction data from English and Dutch, Aylett and Turk (2004, 2006) and van Son
and Pols (2003) show that greater within-word predictability is associated with
shorter segment and syllable token duration, which is consistent with the larger pic-
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ture of probabilistic reduction. Building on this research, Cohen Priva (2008, 2012)
demonstrates that certain features of English segment types are best modeled by
the average contextual predictability of each type within words across the lexicon.
Consonants that are on average less predictable in context have longer durations
and are deleted less often than consonants that are more predictable, even when
they do occur in highly predictable contexts. This paper extends these findings
from segment realization to word realization.

There is related within-word evidence from perception for the claim that language-
users are biased by average contextual probabilities, in addition to local ones. Lee
and Goldrick (2008) show that the errors that English and Korean speakers make
in recalling nonce words are dependent not only on immediate segment transition
probabilities, but also on the typical reliability of different intra-syllable boundaries
in each of the two languages. This suggests that the representation of sub-syllabic
units (the body and rime) is shaped by the average predictability within each unit.

Together, these results provide some evidence that language-users represent av-
erage contextual trends—not just local relationships—and that this representation
influences both production and perception below the word level. However, similar
processing effects have yet to be shown at the word level.

1.4.2 Word lengths

Piantadosi et al. (2011) and Mahowald et al. (2013) show that word informativity
is correlated with word lengths. Words that are usually predictable in context have
fewer letters or segments than words that are usually unpredictable. This correlation
is independent of—and greater than—the known correlation between word lengths
and frequency (Zipf, 1935). Frequent and predictable words are thus both shorter
in length and also reduced in production. Several authors have proposed that these
two phenomena are connected, and that probability-conditioned reduction leads to
permanent representational change (Bybee, 2003; Lindblom et al., 1995; Mowrey
and Pagliuca, 1995; Pierrehumbert, 2001).

1.5 The current study

This paper evaluates whether speakers have a bias favoring reduced productions of
words that are typically encountered in reduced forms. If context-driven probabilis-
tic reduction is represented at the word level, productions of usually-predictable and
therefore usually-reduced words should be more reduced across contexts. This effect
should be proportional to each word’s informativity, since informativity measures
how often that word is reduced online in predictable contexts. On the other hand,
if contextual predictability only causes reduction online, usually-predictable words
should only be reduced when they are actually predictable.

One way to look for the effect is the following: if a word that is usually pre-
dictable occurs in an unpredictable context, it should appear more reduced than
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would be otherwise expected for that context. Equivalently, if a word that is usu-
ally unpredictable occurs in a predictable context, it should appear less reduced than
would be expected for that context, since its representation is biased towards a clear
form. This can be operationalized as the effect of word informativity on acoustic
duration: high-informativity words—words that are usually unpredictable—should
have longer durations than those words which are usually predictable, when all other
factors are held equal.

This hypothesis is evaluated on word durations extracted from the Buckeye and
Switchboard corpora using a series of linear mixed-effects regression models. Word
informativity is included as a variable in the model, and the analysis should show
that this variable is significantly associated with greater word duration if the hy-
pothesis is true. The control variables include local probabilistic reduction—it is
mathematically true that if words are shorter when they appear in predictable con-
texts, then the average token of a usually-predictable word will be shorter than the
average token of a rarely-predictable word. However, the effects of local reduction
are included as a separate parameter in the model. Therefore, if low-informativity
words are only shorter on average because most or all of their tokens occur in pre-
dictable contexts, there will be no independent effect of the type-level informativity
variable: token contextual probability will capture all of the possible variation aris-
ing from context.

Thus, once local probability is factored out of every word token’s duration, a
non-significant informativity effect would suggest that words have durations that can
ultimately be derived from length, segmental content, syllable count, raw frequency,
etc. On the other hand, if low-informativity words are shorter across all contexts,
regardless of local token probability, then informativity should capture a significant
amount of the remaining variance.

2 Materials and methods

2.1 Word duration data

Word durations were extracted from two sources of natural English speech, which
were analyzed separately: the Buckeye Corpus of Conversational Speech (Pitt et al.,
2007) and the NXT Switchboard Annotations (Calhoun et al., 2009) based on
Switchboard-1 Release 2 (Godfrey and Holliman, 1997).

The Buckeye Corpus is a collection of interviews conducted around 1999–2000 in
Columbus, Ohio. There are forty speakers in the corpus, each of whom was recorded
for about one hour under the initial pretense that they were participating in a focus
group on local issues. The speakers were balanced for age and sex, but all were
white natives of Central Ohio belonging roughly to the middle and working class.
The corpus itself contains the original audio recordings as well as several types of
transcriptions and annotations. Word durations for this study were taken from the
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timestamps provided for the word-level annotations. Additionally, each word token
is annotated with two different segmental transcriptions. First, each token includes
a dictionary-based transcription, which is the canonical or citation form for the word
type, generated from automatic alignment software. Second, each individual token
includes a close phonetic transcription, created by an annotator who hand-corrected
the software-generated segments and timestamps for each token.

The Switchboard Corpus is a collection of telephone conversations conducted
as a corporate research project in 1990–1991. The NXT-formatted subset used
here included 642 annotated conversations between 358 speakers (Calhoun et al.,
2010). Speakers from all areas of the United States were recruited through inter-
nal corporate and government listservs, through public electronic bulletin boards,
and by peer-to-peer recruitment. No effort was made to balance speakers by age,
sex, region, or socioeconomic class. Speakers were assigned to conversations with
individuals they had not previously spoken with, and pairs were provided with one
of 70 general-interest conversation topics selected by an automated operator. Word
durations for this study were taken from the corpus annotation timestamps, which
were created by hand-correction of automated word alignment. Below the word
level, only dictionary-based segmental transcriptions were available for the words in
Switchboard.

Only content words were included in the analysis, as it has been shown that
function and content words respond differently to predictability effects (Bell et al.,
2009), and function words are generally considered to be processed differently than
content words (e.g., Levelt et al., 1999). Some content word tokens were excluded
from the analysis for prosodic or other reasons, following standard practice (e.g., Bell
et al., 2003, 2009; Gahl et al., 2012; Jurafsky et al., 2001, 2002). For the purposes of
the following exclusions and for calculating speech rate, an utterance was defined as
a stretch of speech by a single speaker that is delimited by pauses, disfluencies, or
other interruptions greater than or equal to 500 milliseconds. Tokens were excluded
if they were adjacent to a disfluency, a pause, or a filled pause; if they were utterance-
initial or utterance-final; if the word was cliticized (e.g., cousin’s); if the word type
or bigram context was not found in the language model; if the utterance speech rate
was more than 2.5 standard deviations away from the speaker’s mean; if the word
token duration was more than 2.5 standard deviations away from the word type’s
mean; or if there were no vowels or syllabic consonants in the word token’s close
phonetic transcription (in Buckeye). In the Buckeye Corpus, all data from speaker
35 were excluded due to a large number of transcription and alignment errors (Gahl
et al., 2012).

2.2 Probabilistic language model

To test a hypothesis about word predictability, it is necessary to estimate inter-
word probabilities from a source that belongs to the same genre of language to be
analyzed. Research has shown that word probabilities estimated from corpora of

7



the same language register as the one to be modeled are much better associated
with different word processing variables than probabilities estimated from larger
but dissimilar corpora (Brysbaert et al., 2011; Brysbaert and New, 2009; Francom
and Ussishkin, submitted). The Fisher English Training Part 2 Transcripts have a
history of use by previous researchers looking to estimate probabilities in natural
conversational speech (e.g., Arnon and Snider, 2010). Furthermore, they are a good
genre-of-speech match with Buckeye and Switchboard, since all three corpora involve
recorded informal conversations between individuals who are meeting for the first
time.

The Fisher Part 2 corpus is a collection of English telephone conversations cre-
ated at the Linguistic Data Consortium to aid speech-to-text dialogue systems (Cieri
et al., 2005). There are 5,849 conversations of up to ten minutes each, totaling over
12 million words. Speakers were randomly assigned a conversation partner and one
of 100 topics, with an effort to balance speakers by sex, age (although speakers older
than 50 are under-represented), and geographical region (roughly one-fifth from the
US North, Midland, South, and West dialect regions; with one-fifth from Canada
or speaking non-US or non-native English varieties). Each speaker participated in
usually 1–3 conversations in order to maximize inter-speaker variation within the
corpus, and topics were selected for a range of vocabulary. The contents of Buckeye,
Switchboard, and Fisher do not overlap.

Two bigram language models were calculated based on the Fisher transcripts.
These models list the probabilities that each word will occur, given either the word
before it (in one model) or the word after it (in the second model). Bigram mod-
els are standardly used in studies of predictability-based phonetic reduction, and
focused research on predictability measures has shown negligible improvement in
predicting reduction from trigram or more complicated models (Jurafsky et al.,
2001). The probabilities were smoothed with the modified Kneser-Ney method de-
scribed by Chen and Goodman (1998), using the SRILM Toolkit (Stolcke, 2002;
Stolcke et al., 2011) with smoothing parameters optimized by the toolkit. The fi-
nal estimates were used as measures of local contextual predictability. All other
probabilistic measures were also estimated from the Fisher transcripts.

2.3 Variables

Each word token in the two corpora was annotated based on both the Fisher prob-
ability data as well as the type- and token-specific variables described here. First,
word informativity for each word type w was calculated using equation 1, with prob-
abilities taken from the smoothed Fisher language models. Two estimates of word
informativity were calculated, with context c taken as either the preceding word or
following word, respectively. Word informativity here is therefore the average of a
word’s bigram probability across the contexts that it occurs in, weighted by how
frequently it occurs in each of those contexts. Informativity was calculated in bans,
which uses log base 10.
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Previous research has demonstrated that predictability given the following n-
gram context is associated with greater and more reliable reduction effects than
predictability given the preceding n-gram context. In fact, predictability given pre-
ceding context has often been reported as failing to reach significance in predicting
English duration reduction (Jurafsky et al., 2001; Bell et al., 2009; Gahl, 2008), ex-
cept for high-frequency function words. However, informativity in written corpora
is usually calculated based on the preceding context (Piantadosi et al., 2011), and
so preceding informativity is also included here.

Tokens were also annotated for a variety of control variables taken from previous
literature on models of word duration. The collected data were analyzed with a series
of linear mixed-effects models containing these variables as parameters, in order to
evaluate the direction and significance of the association between informativity and
word duration. The exact statistical procedure used to analyze the data is described
in section 2.4.

Word durations, and all continuous control variables, were log-transformed (base
10) and centered around their respective means within each model. The distribu-
tions of these variables were found to be more normal in log space, and this practice
follows previous research (e.g. Bell et al., 2009; see Kuperman and Bresnan, 2012
for discussion). Informativity results are qualitatively the same with and with-
out log-transformation. In addition to the variables described in this section, each
model listed below also includes per-word random intercepts, per-speaker random
intercepts, and correlated per-speaker informativity slopes as controls for individual
word-type and speaker idiosyncrasies.

Baseline duration In order to calculate a baseline expected duration for each word
token, the Modular Architecture for Research on Speech Synthesis (MARY)
text-to-speech system (Schröder and Trouvain, 2003) was used to analyze each
utterance. This baseline was selected to control for the segmental length, con-
tent, and context of each word form. This method follows Demberg et al.
(2012), who also use durations from the MARYTTS system as a baseline con-
trol when they evaluate the effects of syntactic predictability. Previous work
on predictability effects has also used orthographic length, syllable count, sim-
ple segmental length, expected word durations estimated by summing average
segment durations, and/or per-word random intercepts as statistical controls
for word form length and content. Alternative analyses using different base-
lines measures are discussed in section 3.3.4.

The cmu-slt-hsmm voice package was used to calculate acoustic parameters for
each segment and word token. This package has been trained on part of the
CMU ARCTIC database (Komineck and Black, 2003) to estimate segment and
word durations based on the phonological features of the current and adjacent
segments, syllable structure and position, and word stress. To some extent,
the package also models phrase accents and prosody, based on part-of-speech
and utterance boundaries indicated with punctuation.
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Utterances were sent to the MARYTTS system for analysis, and word dura-
tions were extracted from the realized acoustic parameters for each utterance.
Demberg et al. (2012) show that this method of analyzing full utterances,
which allows sentential context to be included, generates word duration esti-
mates that are superior to single-word analysis. The final baseline estimates
were log-transformed and centered.

Syllable count Number of syllabic segments in the word type’s transcription; log-
transformed and centered.

Speech rate Number of syllabic segments per second in each utterance; log-transformed
and centered.

Bigram probability Two variables for the conditional probability of a word given
the previous or following word, as estimated from the smoothed language
models; log-transformed and centered.

Word frequency Raw token count of a word in the Fisher transcripts; log-transformed
and centered.

Orthographic length Number of letters in the word’s orthography; log-transformed
and centered. Previous research has indicated that orthographic length may
have an independent effect on word duration (Warner et al., 2004; Gahl, 2008),
and it is important to include this variable to control for the previously-
observed association between orthographic length and word informativity (Pi-
antadosi et al., 2011).

Part of speech Coded as noun, verb, adjective, or adverb based on the annota-
tions provided in the Buckeye and Switchboard corpora. Other parts of speech
and proper nouns were excluded. In the models, this variable was treatment-
coded with noun as the base level.

2.4 Model procedure

Linear mixed-effects models were fit to the Buckeye and Switchboard word duration
data, using the full set of variables as predictors. Analysis was conducted using the
lme4 package in R (Bates et al., 2013; R Core Team, 2013).

To help guard against model overfitting, backward model selection was done to
remove predictors that did not significantly improve a model. Following this proce-
dure, after each full model was fit, it was compared against a set of models that each
had one fewer predictor. Each model in this set had a different predictor removed.
If the full model was not significantly better than each of these models (α = 0.15
based on log-likelihood fit), the predictor that contributed the least improvement to
fit was removed from the full model. These steps were repeated until the final model
was significantly better than all possible alternatives with one fewer predictor. The
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final model was then compared against the original to confirm that it fit the data as
well as the original. Final p-values for each effect were calculated by log-likelihood
ratio tests that compared the fit of the final model with and without each variable.

For each corpus, a model was fit to all valid content word tokens from that
corpus. However, word informativity is highly correlated with segment count (Pi-
antadosi et al., 2011). Since duration is also predicted by segment count, this raises
the concern that any effect of informativity on duration might be simply because
informative words tend to have more segments. As a precaution against this con-
found, a baseline expected duration is included as a control variable, as described
in 2.3. However, as a further precaution, additional models were fit over content
words matched for a single length in each corpus. For example, one model was fit
only to words with two segments, another model was fit only to words with three
segments, etc. In this way, words could be compared exclusively with other words
of the same segmental length. If informativity has an independent effect on word
duration beyond simply the association with segment count, it should show up in
every one of these models as well.

3 Results

3.1 Study 1: Buckeye

The data from Buckeye included 41,167 word tokens meeting the inclusion crite-
ria, distributed among 3,429 types. Two predictors were found not to significantly
improve fit, and were removed in order: (1) informativity given the previous word
(p > 0.5), and (2) word frequency (p > 0.5). Random per-speaker informativity
slopes provided a significant improvement in fit (p < 0.0001), and were retained
the model. The final fixed and random effects estimates appear in tables 1 and 2,
respectively, with durations in base-10 log seconds. Correlations between each pair
of continuous variables appear in appendix table 1, and density plots showing the
distribution of probabilistic variables appear in figure A.1.

Crucially, informativity given the following word was found to be significantly
associated with word duration. Six additional models were fit over subsets of words
grouped according to their dictionary transcription length, so that informativity ef-
fects on duration could be evaluated independently of segment count. A summary
of the results appears in table 3. As before, informativity given the following word
was found to be reliably associated with duration for words of up to seven segments
long. Informativity given the previous word reached significance in the predicted
direction for 2–segment words, but was non-significant for all other lengths. Pre-
dictors that did not improve fit and were removed from each additional model are
listed in appendix table 2. For every model with a significant informativity effect
in table 3, informativity was a reliable predictor (at least p < 0.05) both before and
after the non-significant predictors were removed.
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β SE t p(χ2)

Intercept 0.0257 0.0057 4.48 —
Baseline duration 0.5879 0.0150 39.32 < 0.0001
Syllable count 0.0592 0.0104 5.71 < 0.0001
Speech rate −0.3406 0.0077 −43.97 < 0.0001
Bigram prob. given previous −0.0102 0.0007 −15.00 < 0.0001
Bigram prob. given following −0.0205 0.0007 −30.55 < 0.0001
Orthographic length 0.0437 0.0167 2.62 0.0089
Part of Speech = Adjective 0.0033 0.0032 1.04 (< 0.0001)
Part of Speech = Adverb −0.0172 0.0042 −4.09 —
Part of Speech = Verb −0.0275 0.0022 −12.54 —
Informativity given following 0.0244 0.0023 10.77 < 0.0001

Table 1: Fixed effects summary for model of Buckeye word durations.

Random effect SD Cor.

Word (intercept) 0.043 —
Speaker (intercept) 0.033 —
Speaker (inf., following) 0.007 0.061

Residual 0.098 —

Table 2: Random effects summary for model of Buckeye word durations.

Inf. given previous Inf. given following
# Seg Types Tokens β SE t p(χ2) β SE t p(χ2)

2 51 2,734 0.0569 0.0217 2.62 0.0116 0.0805 0.0210 3.83 0.0002
3 536 13,282 — — — — 0.0271 0.0050 5.47 0.0001
4 737 12,552 — — — — 0.0198 0.0044 4.53 0.0001
5 660 4,660 — — — — 0.0347 0.0046 7.50 0.0001
6 494 3,324 0.0143 0.0075 1.89 0.0616 0.0335 0.0080 4.22 0.0001
7 379 2,260 — — — — 0.0252 0.0060 4.19 0.0001

Table 3: Informativity results for Buckeye models that compared words matched for segment count.
# Seg = segment count; Types = content word types in Buckeye with that number of segments;
Tokens = content word tokens with that number of segments.

3.2 Study 2: Switchboard

The data from Switchboard included 107,981 word tokens meeting the inclusion cri-
teria, distributed among 4,997 types. Of the ten predictors, only word frequency did
not significantly improve the model at α = 0.15 and was removed (p > 0.7). The
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fixed effects summary is given in table 4, and the random effects summary appears
in table 5 (all durations in base-10 log seconds). Random per-speaker informativ-
ity slopes significantly improved the fit of the model (p < 0.0001). Correlations
between each pair of continuous variables, and density plots for probabilistic vari-
ables, are given in the appendix. As in Buckeye, informativity given the following
word captured a significant amount of duration variance (p < 0.0001). In this model,
informativity given the previous word also reached statistical significance (p < 0.05).

A summary of the results of duration models over words matched for segment
count appears in table 6. The results from Switchboard replicated those from Buck-
eye: informativity given the following word was significantly associated with word
duration in the predicted duration for words of 2–7 segments. Informativity given
the previous word reached significance for words of seven segments, but was elimi-
nated or marginal for all other lengths. A complete list of non-significant predictors
that were pruned from each model is given in appendix table 4. For every model in
which informativity was statistically significant after non-significant predictors were
removed, it was also significant when these predictors were retained in the model,
except for the model of 2–segment words (p < 0.11 before non-significant predictors
were removed).

β SE t p(χ2)

Intercept 0.0287 0.0023 12.62 —
Baseline duration 0.5363 0.0102 52.34 < 0.0001
Syllable count 0.0492 0.0070 7.01 < 0.0001
Speech rate −0.3260 0.0044 −74.79 < 0.0001
Bigram prob. given previous −0.0082 0.0005 −18.17 < 0.0001
Bigram prob. given following −0.0227 0.0004 −53.91 < 0.0001
Orthographic length 0.1343 0.0115 11.69 < 0.0001
Part of Speech = Adjective −0.0051 0.0021 −2.36 (< 0.0001)
Part of Speech = Adverb −0.0186 0.0026 −7.18 —
Part of Speech = Verb −0.0410 0.0017 −23.87 —
Informativity given previous 0.0040 0.0016 2.48 0.0131
Informativity given following 0.0142 0.0016 8.72 < 0.0001

Table 4: Fixed effects summary for model of Switchboard word durations.

3.3 Additional description and exploratory analysis

Figure 2 shows a sample of word types that appeared in the analysis. Log-frequency
appears on the vertical axis and informativity given the following word is on the
horizontal axis, with both measures calculated from the Fisher language model.
Nowadays appears on the right side of the chart, with an informativity of 3.93 bans.
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Random effect SD Cor.

Word (intercept) 0.039 —
Speaker (intercept) 0.028 —
Speaker (inf., previous) 0.006 −0.158
Speaker (inf., following) 0.007 0.089

Residual 0.100 —

Table 5: Random effects summary for model of Switchboard word durations.

Inf. given previous Inf. given following
# Seg Types Tokens β SE t p(χ2) β SE t p(χ2)

2 81 6,136 — — — — 0.0270 0.0119 2.27 0.0238
3 665 35,956 — — — — 0.0158 0.0036 4.39 0.0001
4 983 29,892 0.0063 0.0034 1.84 0.0670 0.0143 0.0035 4.11 0.0001
5 940 14,586 0.0061 0.0035 1.75 0.0806 0.0173 0.0034 5.07 0.0001
6 758 8,372 — — — — 0.0220 0.0037 5.98 0.0001
7 607 6,539 0.0097 0.0047 2.06 0.0400 0.0145 0.0041 3.53 0.0005

Table 6: Informativity results for Switchboard models that compared words matched for segment
count.

Current has an informativity of 1.13 bans, which would put it to the left of the plot
area.

3.3.1 Extension of previous work on correlations with informativity

For all content word types across the two corpora, the correlation between ortho-
graphic length and informativity given the previous word (Spearman’s ρ = 0.27)
is numerically similar to what was reported by Piantadosi et al. (2011) for all En-
glish word types (note that coefficients in A are calculated over tokens). This is
marginally higher than the correlation between orthographic length and frequency
(ρ = 0.26). Since function words were excluded from the data here, this finding helps
address a possible concern that the correlation was influenced by the distribution of
function words versus content words (see Mahowald et al., 2013). Furthermore, the
correlation between orthographic length and informativity given the following word
is slightly higher (ρ = 0.29).

3.3.2 Word frequency

Word frequency did not consistently improve the fit of the duration models, contra
earlier research. However, this was found to be due to the inclusion of per-word
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Figure 2: Sample of 200 word types that were observed in the combined data at least 10 times.
Word types on the left are on average more predictable in context, and word types towards the top
are more frequent. Dashed line shows local trend for all word types with at least 10 observations.

random intercepts in the current models, which captured most of the effect of fre-
quency and some of the other per-type variables. Removing the per-word intercept
parameter revealed an apparently reliable effect of word frequency in the positive
direction (Buckeye: β = 0.0092, t = 4.45; Switchboard: β = 0.0088, t = 7.04). Fur-
thermore, removing per-word intercepts made both informativity effects appear very
reliable in the predicted direction (Buckeye: given previous: β = 0.0087, t = 3.85;
given following: β = 0.0402, t = 16.27; Switchboard: given previous: β = 0.0139,
t = 11.65; given following: β = 0.0289, t = 24.75).

The positive word frequency estimate does not suggest that more frequent words
have longer durations. Instead, word frequency is acting as a suppressor variable for
informativity (Friedman and Wall, 2005; Wurm and Fisicaro, 2014). Informativity
is strongly correlated with word durations (Pearson’s rY 1 = 0.52 for Buckeye) and
frequency is less well correlated with duration (rY 2 = −0.28). However, informa-
tivity and frequency are well correlated with each other (r12 = −0.58). In the case
where the inequality r12 > rY 2/rY 1 holds (here: 0.58 > 0.28/0.52) or is nearly satisfied1,

1In a model with more than two predictors, the exact boundary also depends on the other
relations among the predictors and with the outcome variable. Also, note that calculations here
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the variable that is less well correlated with the outcome (frequency) may change
sign.

Because frequency is much better correlated with informativity than with du-
ration, in the model frequency is used to explain some of the error associated with
informativity, rather than explaining a unique portion of duration variance. Wurm
and Fisicaro (2014) show that, on simulated data with two correlated variables that
fall into this region, the impact on the variable with the larger effect (here, informa-
tivity) is that this variable may have a slightly inflated estimate β, but that there
is also a large loss of statistical power for detecting the variable’s effect. Adelman
et al. (2006) also report that frequency acts as a suppressor when it is entered into
a model with a measure of contextual diversity (to predict reading times; see also
McDonald and Shillcock, 2001), which is a variable that is conceptually similar to
informativity.2

However, in the more conservative analysis—which includes the per-word inter-
cept parameter—frequency simply fails to reach statistical significance at α = 0.15
and is removed from the model. With this parameter, frequency was also found
to be non-significant in each of the models by segment count for Switchboard, as
reported in appendix table 4, and non-significant in four of the seven models by
segment count for Buckeye, as reported in 2.

To evaluate whether a different corpus might produce different results, alterna-
tive bigram language models (forward and backward) were constructed from the
450-million-word Corpus of Contemporary American English (Davies, 2008). This
corpus is larger, but it is mixed-genre and includes mostly written sources. This
analysis included the original random effects structure and all of the parameters in
the original model, except that the probabilistic measures (local bigram probability,
frequency, and informativity) were replaced by estimates from the COCA language
model. The COCA language model was smoothed using the Witten-Bell method
(Witten and Bell, 1991), since counts for very low-frequency bigrams in COCA were
not available.3 In this analysis, frequency was found to be a reliable predictor in the
expected direction (Buckeye: β = −0.009, t = −2.38, Switchboard: β = −0.0111,
t = −4.06), while informativity given the following word retained its significance
(Buckeye: β = 0.0170, t = 4.65, Switchboard: β = 0.0081, t = 3.40).

are done for frequency and duration prior to log-transformation, but the same condition exists for
correlations after log-transformation.

2It is possible to remove this correlation and change the direction of the frequency effect by
residualizing informativity on frequency. However, residualization does not change the estimates of
the residualized variable (informativity), has a number of other undesirable effects on the model,
and makes the interpretation of both residualized and residualizer variables problematic (Wurm
and Fisicaro, 2014).

3The informativity effects were robust to the smoothing technique used on the original Fisher
language model. For both datasets, model estimates for both bigram probability and informativity
were similar when unsmoothed probabilities were used instead.
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3.3.3 Predictability versus lexicalized two-word expressions

Given that the informativity measure is derived from bigram predictability, one
question is whether predictability-driven reduction might be caused by lexicalized
bigrams, rather than predictability-in-context per se. For example, one hypothesis
might be that human is reduced in contexts like human being, human rights, human
nature, human life, etc. not because human is predictable in those contexts, but
because a bigram like human rights is stored as a single lexical entry. If such
bigrams are processed as a single unit, it would be reasonable to expect them to be
produced more quickly than two more independent words.

This question primarily has to do with the interpretation of bigram predictability,
not informativity. If a word like human or current occurs in a common expression,
it will be predictable in that context. Therefore, its reduction can be explained by
its local bigram probability. If a word like human mainly occurs in such expres-
sions, it will also have a low informativity value, since it is predictable on average.
However, this could not be taken as evidence for an informativity effect. Wherever
human occurs in a predictable expression, its reduction can be explained by local
bigram probability. In order for there to be statistical evidence for an informativity
effect, human must also be shortened in unpredictable contexts (or lengthened in
predictable ones) beyond what the model would otherwise predict given the local
relations between words.

Some previous work has addressed whether word reduction associated with local
predictability should be interpreted as an effect of lexicalized bigrams. Bell et al.
(2009) calculate pointwise mutual information for each bigram type in their data.
This measure quantifies how dependent two words are on each other. They exclude
tokens that occur in bigrams with a mutual information value in the top 15% of
their data, but find that their bigram-predictability estimates are not qualitatively
different with these data excluded. This suggests that predictability-driven reduc-
tion cannot be exclusively attributed to lexicalized bigrams. Jurafsky et al. (2001)
study reduction of function word durations and vowel quality. They exclude tokens
that have a bigram probability greater than the median bigram probability in their
data. They find that local bigram predictability given the following word is robust
to this exclusion, whereas local predictability given the previous word is still a sig-
nificant predictor of duration reduction, but not of vowel reduction. Note that, for
content word durations, Bell et al. (2009) did not originally find a significant effect
of predictability given the previous word.

3.3.4 Alternative baseline durations

Recent work on probabilistic reduction has used corpus-derived estimates of word
duration as a baseline for each word type. For example, Bell et al. (2009) and Gahl
et al. (2012) calculate expected durations first by determining the mean duration
of each segment type across the corpus. Then, for the segments in each word’s
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transcription, these mean segment durations are summed together to generate a
baseline expectation for the word’s total duration. For example, in the word fish
[fIS], the baseline duration would be the mean corpus duration of [f], plus the mean
corpus duration of [I], plus the mean corpus duration of [S]. An alternative analysis
was conducted using this measure as a baseline, rather than the MARYTTS duration
model. For Buckeye, close phonetic transcriptions were available, and these were
used in place of dictionary transcriptions. This means that expected durations
in Buckeye were calculated based on each word token’s transcription, rather than
the word type’s dictionary citation form. However, using dictionary transcriptions
for Buckeye did not qualitatively change the results. With this baseline measure,
informativity given the following word was significant (at least p < 0.05) in both of
the full corpus models and all of the models stratified by segment count, for both
corpora. Informativity given the previous word was also significant in some models
using this baseline, but overall the effect was inconsistent.

A similar alternative baseline might also be adapted to take into account some
of the effects of segmental context. Buz & Jaeger (p.c.) calculate baselines first
by extracting mean durations of each segment type conditioned on the previous
segment type. For example, the segment [t] has a different mean duration following
[s] than following [n] or [@], which reflects general articulatory constraints as well as
language-specific phonetics and phonology. An alternative analysis was conducted
using this biphone-sensitive measure as a baseline. For each word type, the mean
durations of each segment type given the previous segment in the transcription were
summed together. For example, in the phrase a fish [@ fIS], the baseline duration of
the token fish was taken to be the mean duration of [f] when it follows [@] in the
corpus, plus the mean duration of [I] when it follows [f], plus the mean duration of
[S] when it follows [I].

Using these baselines, in the Switchboard analysis, informativity given the fol-
lowing word was significant in the full corpus model and all of the models stratified
by segment count. In Buckeye, for which close phonetic transcriptions were avail-
able, informativity given the following word was significant (at least p < 0.05) in the
full model and all of the models stratified by segment count, except for the model of
6–segment words (p < 0.10). When dictionary transcriptions were used to generate
the Buckeye baselines, the informativity effect in the model of 6–segment words was
also significant. As before, informativity given the previous word was inconsistent
across analyses and word lengths.

3.3.5 Segment deletion and duration

The effect of informativity on word durations might involve segment compression,
and it might also involve categorical segment deletion. Figure 3 shows the mean
percentage of segments that were transcribed as deleted from word tokens in the
Buckeye data at each segment count. These numbers are very similar to those
reported for content words by Johnson (2004). For that study, close transcriptions
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were only available for about 1⁄3 of the full corpus. However, the data here also
involve additional exclusions (such as exclusion of pause-adjacent tokens; see section
2.1). As observed by Johnson (2004) and replicated here, short content words with
four or fewer segments in their dictionary transcriptions are rarely transcribed as
having segments deleted (< 5% of segments deleted; although see also the segment
deviation analysis in that study). Since there was an effect of informativity on word
durations for these short words, it is more likely that the effect for these words
involves compression rather than deletion.
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Figure 3: Mean percentage of segments deleted for word tokens of each segment count, based on
comparisons of the dictionary and close phonetic transcriptions in the Study 1 Buckeye data.

Figure 4 shows the Spearman correlation coefficients between word informativity
and the percentage of segments that were deleted in Buckeye tokens, divided by dic-
tionary segment count. The figure also shows the coefficients between informativity
and duration at each segment count. While there is a reliable correlation across
different word lengths between informativity given the following word and duration,
informativity is not well associated with deletion (as transcribed in the corpus) for
shorter words of less than five segments. For longer words, full segment deletion
probably also contributes to the duration effect.

To explore these two possible components of the duration effect, an alternative
analysis was carried out using only those Buckeye word tokens which had a close
phonetic transcription that was completely identical to the word type’s dictionary
transcription (20,296 of the original 41,167 tokens meeting the inclusion criteria).
For these data, informativity given the following word had a statistically significant
effect (at least p < 0.05) in the full model and for words of each segment count,
except for 7–segment words, where the effect was non-significant (p > 0.4; with 408
tokens and 122 different types). The effect sizes for informativity were roughly the
same as in the primary analysis; for 5 and 7–segment words the estimate was much
smaller. Because informativity was found to influence duration for these words which
had no segments deleted, compression is likely a key component of the informativity
effect on word durations. However, deletion is not ruled out as a part of the effect,
especially for longer word types for which full segment deletion is transcribed more
often in general.

However, the analysis is potentially much more complex when considering seg-
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Figure 4: Spearman correlations between (i) informativity given the following word and (ii) duration
(black circles) or percentage of segments deleted (black squares). Calculated over Study 1 Buckeye
word tokens at each dictionary transcription length; error bars show bootstrapped 95% confidence
intervals. Additional gray lines show correlations between frequency and duration or percentage
of segments deleted. Lower informativity corresponds with shorter durations and higher deletion
rates; deletion coefficients here are inverted for comparison with duration coefficients.

ment deletion in particular, instead of whole-word durations. For example, language-
specific categorical deletion processes are typically restricted to particular contexts
or classes of words, such as [t] reduction in English (Pitt et al., 2011) or schwa dele-
tion in English or French (Connine et al., 2008; Racine and Grosjean, 2005). Many
deletion processes are also sensitive to additional sub-lexical factors such as mor-
phological structure (e.g., Labov et al., 1968; Guy, 1991; although see also Sugahara
and Turk, 2009). A targeted study is likely better suited to analyze the interaction
of word informativity with deletion processes (see Cohen Priva, 2012, especially Ch.
3).

4 General discussion

The main result of this paper is that the average contextual predictability of a
word—word informativity—has a significant effect on that word’s acoustic duration.
A word that is usually unpredictable has a longer duration than a word that is
usually predictable, independent of local contextual predictability, frequency, or
segment count. The effect size is comparable to reduction associated with local
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predictability. The effect was reliable for informativity given the following word, but
not given the previous word. This difference is consistent with previous research on
local probabilistic reduction in content words.

Since informativity captured a significant amount of the variance beyond local
bigram probability, it is not the case that predictable words simply have shorter
tokens on average because most of their tokens are reduced. Instead, even after the
local probability of every token is taken into account, there is an additional effect
of each word’s average predictability in the hypothesized direction. If most tokens
of a word are reduced in duration because they appear in high-probability contexts,
the duration of that word was also found to be shorter overall, independent of token
context.

4.1 Accounting for the informativity effect

Previous research has suggested that if a word is reduced often enough, speakers will
encode that reduction in their representation of the word. This stored reduction will
bias future productions of that word in all contexts. The current results support
this prediction for probabilistic reduction. If a word is reduced very often because
it often occurs in high-probability contexts, productions of that word are biased
towards a more reduced form, even when it is not produced in a high-probability
context. The informativity finding might be captured by several possible speech
processing models, described below.

4.1.1 Exemplar-based and combined exemplar–abstract models

In an exemplar model, all phonetic detail of each incoming word token is stored
as an exemplar of that word (Goldinger, 1996, 1998; Johnson, 1997, 2006, 2007).
Representation is constructed from the distribution of previously-encountered ex-
emplars. The forms that are most often heard and stored therefore have a greater
influence on this distribution. Since low-informativity words are very commonly
reduced, the distribution of exemplars of a low-informativity word will be biased
towards reduced forms. To generate a production target, one or more exemplars
are sampled from this distribution (Goldinger, 2000; Pierrehumbert, 2001). In some
intermediate models, word exemplars that belong to a single category are com-
pressed into a phonologically-abstract secondary representation that also influences
the generation of a production target (Goldinger, 2007; Ernestus and Baayen, 2011;
German et al., 2013; Ernestus, 2014). The production target is then passed to a
system for phonetic implementation, during which motor-planning, articulatory, or
other effects influence the final realization (Ernestus, 2014).

When speakers produce a low-informativity word, they will be more likely to
sample reduced exemplars of that word when generating a target, even if the con-
text would not otherwise trigger reduction (Goldinger, 2000; Pierrehumbert, 2002).
During phonetic implementation, online probabilistic reduction may occur (Ernes-
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tus, 2014), causing the word to be further reduced. Thus, low-informativity words
should be reduced due to offline informativity effects—a higher likelihood of sam-
pling reduced exemplars—as well as online contextual ones, which apply during
phonetic implementation.

4.1.2 Abstract models with multiple variants

The results can also be described by a model with abstract phonological represen-
tations. In such a model, each word representation includes an unreduced citation
form, and may also include several reduced variants that are sufficiently common
in a language-user’s experience. The importance that each variant form has for
perception and production depends on their relative frequencies (Connine et al.,
2008; Racine and Grosjean, 2005; Bürki et al., 2010; Pitt et al., 2011; Ranbom and
Connine, 2007). It may also depend on factors such as orthography (Ranbom and
Connine, 2007, 2011), a communicative pressure that favors unreduced forms (Pitt
et al., 2011), and probabilistic knowledge about articulatory contexts (Mitterer and
McQueen, 2009).

If a reduced variant of a word type has a higher relative frequency, it will be more
accessible in production (Bürki et al., 2010), and more often accessed in spontaneous
speech. In this case, the informativity effect would represent the proportion with
which the unreduced variant is selected in favor of the reduced variant. For example,
consider a scenario in which the word current has two abstract variant forms stored
in lexical representation. One form is the unreduced citation variant [kô

"
.Int], and the

other is a reduced variant [kỗ
"
P]. The analysis presented here models word duration,

not the selection of variant forms. Duration is not represented in these abstract
forms, but it is empirically true that the unreduced variant has an average duration
of 350ms, while the reduced variant has an average duration of 200ms. If speakers
usually select the unreduced variant, on average the word type will have a longer
duration that is closer to 350ms. If speakers usually select the reduced variant, on
average the word type will have a shorter duration that is closer to 200ms.

Given that unreduced variants can reasonably be assumed to always be longer
than reduced variants (or at least not shorter), the informativity parameter then
describes the tendency for speakers to select unreduced variants in general. If in-
formativity has a positive coefficient, that means that the model predicts that high-
informativity word types will have longer durations on average, because speakers
prefer to select the unreduced variant more often than the reduced variant.

4.1.3 Rational speech production

There are other representational models that might result in an informativity effect.
For example, it may be the case that each word type has a default phonetic target
for production. If a speaker chooses to deviate from this default, such as to reduce
or hyper-articulate a word, it is costly to do so in motor planning (even though
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reduction might save on articulatory effort) and the speaker may not always reach
their deviant target. Therefore, in order to minimize both planning and articulatory
costs and maximize effectiveness, a rational speaker will select a default target for
each type that is most similar to the tokens that usually need to be produced. If
reduction is usually called for, then the rational speaker will choose a reduced default
form, so that it is only rarely necessary to deviate from that form and incur costs
(thanks to Roger Levy for this suggestion). In this model, informativity is a goal-
oriented effect chosen directly by the speaker, rather than an indirect consequence
of representation.

4.1.4 Efficient articulation

A related model might also refer to word-specific articulatory timing specifications.
In this model, words are specified for tighter or looser alignments of each necessary
articulatory gesture. This results in a range of possible reductions during fast speech
that is unique to each word (Lavoie, 2002). Low-informativity words usually occur
in predictable contexts. In such contexts, a speaker is more likely to be understood,
and consequently is more likely to accept an imprecise production of a target word
as an adequate acoustic realization of that word. A speaker will gradually learn
through experience that some or all gestures in such a word can have looser tim-
ings, yet still produce an acceptable acoustic form (following Jaeger and Ferreira,
2013; Jaeger, 2013). Over time, the word will acquire less strict gestural alignment
specifications. Because of this, gestural overlap (and, potentially, a greater degree
of acoustic reduction) will become more likely for this word in all contexts.

For example, Jaeger and Ferreira (2013) suggest that it is primarily reductions of
low-confusability words or word forms that become acceptable variants in common
usage. By definition, low-informativity words tend to be more predictable and are
unlikely to be very confusable in context.

4.1.5 Direct knowledge of average word probabilities

It may instead be the case that an informativity metric is represented directly at
the word level. In other words, language-users would not store reduction or re-
duced variant forms, but instead would directly track how predictable a word type
is on average. This would be stored in addition to (implicit or explicit) knowl-
edge about specific inter-word relationships. In production, speakers would then
use their knowledge of both factors, plus frequency, to determine online how much
articulatory effort to give to a word. The results of Lee and Goldrick (2008), who
argued that speakers perceptually track both average predictability as well as local
predictability of segments within syllables, suggest that language-users may in some
way use informativity-like knowledge in perception.

Extending this account to production would require that informativity-driven
reduction be a consequence of audience-design considerations. An online processing
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model of probabilistic reduction is more difficult to reconcile with an informativ-
ity effect. In these models, locally-predictable words gain a boost in activation
from nearby words or related constructions that are usually associated with them,
which speeds production. The current results show that low-informativity words
are shorter even in unpredictable contexts where no nearby syntactic or semantic
associates would cause pre-activation. An online processing model of informativity
would thus require an additional mechanism to explain how pre-activation occurs
even in contexts where there are no associated words to activate the target.

An online audience-design account of informativity is possible. In this account,
speakers are aware of the fact that their own model of word probabilities may not
be exactly the same as their listeners’ models. Since informativity is an averaged
probability, it would be prudent for the speaker to adjust an extreme estimate
of local probability by also weighing how probable the target word usually is, on
average. Note that the primary informativity effect involved predictability given
the following word, not the previous word. If speakers reduce words when they are
predictable for the listener, this must be accommodated by research showing that
listeners interpret words based on the following context as well as the preceding
context (Szostak and Pitt, 2013).

In this account, speakers would store probabilistic knowledge of how predictable
each word tends to be, rather than storing the effects of reduction. This would still
likely entail lexical representation of informativity, since this knowledge is word-
specific. This account would also require that speakers then balance at least three
sources of probability (context-specific, average context, and frequency) in choosing
how much articulation a word requires for efficient communication. By contrast, an
offline representational account of informativity gives rise to the observed effect and
requires neither active goal-oriented behavior on the part of the speaker nor fine-
grained negotiation of multiple word-specific probabilities during each articulation.

4.2 Summary

Previous research has shown that words are reduced when they occur in predictable
contexts. The results of this paper show that words which are typically predictable
in context are reduced even when they occur in unpredictable contexts. This phe-
nomenon is predicted by models in which probabilistic reduction is stored in repre-
sentation, and this stored reduction has a stronger effect on processing when it is
relatively more frequent.

The effect was found to be robust across English word types of different lengths
and segmental content, for two large corpora and various implementations of a
probabilistic language model. None of a large set of control variables could fully
account for the relationship between informativity and duration. Future work might
evaluate different representational accounts with laboratory production studies, in
not only English but also other languages. In particular, such work might help
explain the correlation between word lengths and informativity across languages.
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A Predictor summaries
Duration (log seconds)

−1.5 −1.0 −0.5 0.0

Bigram given previous (log−10 prob)

−6 −5 −4 −3 −2 −1 0

Bigram given following (log−10 prob)

−6 −5 −4 −3 −2 −1 0

Frequency (log tokens)

0 1 2 3 4 5

Informativity given previous (bans)

0 1 2 3 4 5 6

Informativity given following (bans)

0 1 2 3 4 5 6

Figure A.1: Density plots showing the distribution of the probabilistic variables in the Buckeye
Corpus. Variables were centered before being entered into the model.

Duration (log seconds)

−1.5 −1.0 −0.5 0.0

Bigram given previous (log−10 prob)

−6 −5 −4 −3 −2 −1 0

Bigram given following (log−10 prob)

−6 −5 −4 −3 −2 −1 0

Frequency (log tokens)

0 1 2 3 4 5

Informativity given previous (bans)

0 1 2 3 4 5 6

Informativity given following (bans)

0 1 2 3 4 5 6

Figure A.2: Density plots showing the distribution of the probabilistic variables in the Switchboard
Corpus. Variables were centered before being entered into the model.
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Seg Dur Mary Syl Rate Bg-P Bg-F Freq Orth Inf-P Inf-F

Seg 1.00 0.57 0.86 0.76 0.02 −0.26 −0.25 −0.37 0.87 0.35 0.36
Dur 0.57 1.00 0.63 0.48 −0.21 −0.32 −0.43 −0.44 0.55 0.37 0.50

Mary 0.86 0.63 1.00 0.71 0.01 −0.21 −0.25 −0.31 0.83 0.28 0.35
Syl 0.76 0.48 0.71 1.00 0.06 −0.23 −0.19 −0.29 0.76 0.30 0.29

Rate 0.02 −0.21 0.01 0.06 1.00 0.03 0.02 0.02 0.02 −0.01 −0.02
Bg-P −0.26 −0.32 −0.21 −0.23 0.03 1.00 0.38 0.64 −0.22 −0.73 −0.54
Bg-F −0.25 −0.43 −0.25 −0.19 0.02 0.38 1.00 0.58 −0.23 −0.49 −0.70
Freq −0.37 −0.44 −0.31 −0.29 0.02 0.64 0.58 1.00 −0.31 −0.86 −0.84
Orth 0.87 0.55 0.83 0.76 0.02 −0.22 −0.23 −0.31 1.00 0.28 0.33
Inf-P 0.35 0.37 0.28 0.30 −0.01 −0.73 −0.49 −0.86 0.28 1.00 0.71
Inf-F 0.36 0.50 0.35 0.29 −0.02 −0.54 −0.70 −0.84 0.33 0.71 1.00

Table 1: Spearman correlations between variables in Buckeye data. Seg = segment count, Dur =
empirical duration, Mary = baseline duration, Syl = syllable count, Rate = speech rate, Bg-P
= bigram probability given previous word, Bg-F = bigram probability given the following word,
Freq = word frequency, Orth = orthographic length, Inf-P = informativity given the previous
word, Inf-F = informativity given the following word.

# Seg Non-significant predictors removed

2 Syl (p > 0.8), Orth (p > 0.6), Bg-P (p > 0.15)
3 Orth (p > 0.5), Syl (p > 0.2), Freq (p > 0.2), Inf-P (p > 0.4)
4 Orth (p > 0.4), Freq (p > 0.4), Inf-P (p > 0.2), Syl (p > 0.15)
5 Inf-P (p > 0.8), Orth (p > 0.7), Freq (p > 0.4)
6 —
7 Freq (p > 0.7), Inf-P (p > 0.5)

Table 2: Predictors removed at α = 0.15 in each Buckeye model by segment count. Abbreviations
given in caption to figure 1.

Seg Dur Mary Syl Rate Bg-P Bg-F Freq Orth Inf-P Inf-F

Seg 1.00 0.60 0.86 0.67 0.00 −0.27 −0.24 −0.38 0.87 0.35 0.36
Dur 0.60 1.00 0.65 0.46 −0.20 −0.34 −0.44 −0.46 0.56 0.40 0.50

Mary 0.86 0.65 1.00 0.64 0.01 −0.24 −0.26 −0.35 0.82 0.31 0.37
Syl 0.67 0.46 0.64 1.00 0.07 −0.26 −0.22 −0.32 0.67 0.34 0.33

Rate 0.00 −0.20 0.01 0.07 1.00 0.02 0.01 0.03 0.01 −0.02 −0.02
Bg-P −0.27 −0.34 −0.24 −0.26 0.02 1.00 0.39 0.65 −0.23 −0.74 −0.55
Bg-F −0.24 −0.44 −0.26 −0.22 0.01 0.39 1.00 0.60 −0.23 −0.50 −0.71
Freq −0.38 −0.46 −0.35 −0.32 0.03 0.65 0.60 1.00 −0.32 −0.86 −0.84
Orth 0.87 0.56 0.82 0.67 0.01 −0.23 −0.23 −0.32 1.00 0.29 0.35
Inf-P 0.35 0.40 0.31 0.34 −0.02 −0.74 −0.50 −0.86 0.29 1.00 0.71
Inf-F 0.36 0.50 0.37 0.33 −0.02 −0.55 −0.71 −0.84 0.35 0.71 1.00

Table 3: Spearman correlations between variables in Switchboard data. Abbreviations given in
caption to figure 1.
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# Seg Non-significant predictors removed

2 Inf-P (p > 0.7), Freq (p > 0.8), Syl (p > 0.3)
3 Orth (p > 0.9), Freq (p > 0.8), Inf-P (p > 0.6)
4 Freq (p > 0.7), Syl (p > 0.3)
5 Freq (p > 0.3)
6 Freq (p > 0.9), Orth (p > 0.3), Syl (p > 0.2), Inf-P (p > 0.15)
7 Freq (p > 0.9), Orth (p > 0.6)

Table 4: Predictors removed at α = 0.15 in each Switchboard model by segment count.
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