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Abstract
Speaker diarization accuracy can be affected by both acous-
tics and conversation characteristics. Determining the cause
of diarization errors is difficult because speaker voice acoustics
and conversation structure co-vary, and the interactions between
acoustics, conversational structure, and diarization accuracy are
complex. This paper proposes a methodology that can distin-
guish independent marginal effects of acoustic and conversa-
tion characteristics on diarization accuracy by remixing conver-
sations in a factorial design. As an illustration, this approach
is used to investigate gender-related and language-related accu-
racy differences with three diarization systems: a baseline sys-
tem using subsegment x-vector clustering, a variant of it with
shorter subsegments, and a third system based on a Bayesian
hidden Markov model. Our analysis shows large accuracy dis-
parities for the baseline system primarily due to conversational
structure, which are partially mitigated in the other two systems.
The illustration thus demonstrates how the methodology can be
used to identify and guide diarization model improvements.
Index Terms: diarization, error analysis

1. Introduction
Diarization is the process of automatically clustering spoken
utterances into groups such that each group contains all and
only the utterances produced by a single speaker. Automatic
diarization systems are considered to be more accurate when
they create groups of utterances that are closer to this ideal.
What affects the accuracy of automatic diarization? Accuracy
is logically influenced by acoustics: for instance, accuracy will
be worse if a system cannot easily differentiate the voices of
two speakers. However, conversation structure—the number
of speakers and the schedule of their turns and pauses—also
affects accuracy. Most diarization systems operate by extract-
ing and clustering short speech subsegments [1] (see [2] for a
review of alternatives), which is most reliable when those sub-
segments do not span across speaker turn boundaries and when
the clusters are similar in size. As a consequence, these systems
have better accuracy in balanced conversations with long turns
and little turn overlap [3, 4].

Distinguishing the two sources of error is difficult because
groups of speakers with different voice acoustics may also en-
gage in conversation differently. For example, previous work
has documented gendered differences in turn-taking style [5, 6],
which implies that differences in diarization accuracy for fe-
male and male speakers could be due to turn-taking structure
as well as acoustics. While a regression could be used to dis-
tinguish these variables, such an analysis is only realistic with a
prior specification of how the relevant conversational and acous-
tic variables interact to affect accuracy.

We propose analyzing diarization error using an experimen-
tal intervention that de-correlates speaker voice characteristics
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and conversation structures in the experimental design rather
than in the analysis. We describe a procedure for remixing
conversations in a speaker-conversation factorial design. We
illustrate the procedure by generating experiments based on
two widely-used corpora, and use the experiments to test three
open-source diarization systems: a baseline system that uses x-
vector-based AHC; a variant of the same system with shorter
subsegments; and a third system with Bayesian HMM frame-
realignment. We analyze the errors that they produce, which
indicate specific directions for improvement.

2. Method
Consider the following structure with seven speech segments
and two roles, A and B. One speaker (in dark purple) pro-
duces three consecutive segments, and then a second speaker
(in light green) asks a question over two segments, then the pur-
ple speaker responds with two segments.

Structure: A A A B B A A
Duration (sec): 3.0 2.0 4.0 1.5 0.5 6.0 2.0

If a diarization system attributes the first B segment to A,
the F1 scores for the speakers in roles A and B are 0.96 and 0.40,
respectively. Is the difference because the diarization system
has difficulty with the green speaker’s voice characteristics, or
is it because role B has less speech than role A to use for cluster
estimation? To answer this question, one can test mirror-image
versions of the structure in which both speakers are assigned to
both possible roles:

Version 1: A A A B B A A
Version 2: A A A B B A A

By testing both possible versions, the effects of speaker
voice characteristics can be separated from the effects of the
conversation structure. The two versions will not occur in a nat-
ural speech corpus. Instead of using natural conversations, both
versions are constructed by splicing source audio from the two
speakers according to the desired structure [7]. If there are more
than two speakers and roles, then all factorial combinations of
speakers and roles can be generated.

After simulating and testing both versions of the conversa-
tion, an F1 score (or any other class-specific metric) is calcu-
lated for each speaker and for each role, averaging over the two
versions. If the green speaker has significantly lower average
F1, the errors must be partially due to characteristics involving
that speaker’s voice or channel. Similarly, if role B has lower
F1 than role A regardless of the actual speakers assigned to each
role, then at least part of the diarization error is due to that role.
Alternatively, diarization error rate (DER) can be calculated for
both versions of this structure and compared to the factorial sim-
ulations of another structure using the same two speaker voices.
If DER is still worse for this structure even with the same two
voices, then the structure itself must be a source of higher error.



3. Experiment 1: Gender in Fisher
To illustrate the proposed technique, we first evaluate how gen-
der correlates with the accuracy of three version of an exam-
ple model for American English. Gender is defined here as
the apparent female or male gender perceived by an annotator;
our analysis thus evaluates only the perception of gender with-
out allocating gender experience or identity to voices. Female
and male voices can have different acoustic properties due to
physical differences in vocal tract anatomy [8, 9] and socialized
norms [10]. Therefore, gender might correlate with diarization
accuracy if the embedding model has more difficulty with some
acoustic features (e.g., wide formant spacing) than others. At
the same time, gender can also be associated with differences in
turn-taking style [5, 6, 11], and these differences might also pro-
duce a correlation between gender and diarization accuracy. If
a system developer wants to achieve equal performance across
groups, these two possibilities must be distinguished to identify
the system component that needs to be improved.

3.1. Example diarization systems

For the illustration, we evaluated three versions of the 8 kHz
diarization system from the Kaldi CALLHOME diarization v2
recipe [12], a standard diarization benchmark. In the baseline
system, speaker embeddings were extracted using 1.5 second
audio subsegments with 0.75 second overlap, then grouped to-
gether with agglomerative hierarchical clustering using PLDA
scores [13] for the similarity matrix. The second system had
shorter 0.75-second subsegments; because shorter subsegments
imply that a smaller proportion will intersect speaker turn
boundaries, we hypothesized that this will reduce sensitivity
to any differences in turn-taking structure. The third system
(‘VB’) included frame-level resegmentation with a Bayesian
HMM as described in [14].

3.2. Evaluation data

The systems were evaluated on the Fisher Corpus of Ameri-
can English [15] (LDC2004S13, LDC2005S13, LDC2004T19,
LDC2005T19), which contains 10-minute partial transcriptions
of 11,699 two-person conversations, including 4,736 with two
female speakers, 3,143 with two male speakers, and 3,820 with
one female and one male speaker. Conversation style is nat-
urally individual and context-dependent, and our analysis and
conclusions are limited by design only to aggregated differences
in this specific corpus of conversations.

We initially tested the diarization systems on the original
Fisher Corpus. The baseline system had significantly higher
median DER (omitting overlapped speech) for the conversa-
tions with two female speakers (3.49) than the conversations
with two male speakers (3.02) or mixed-gender conversations
(2.83; all pairwise differences p < 0.0001 by Mann-Whitney
test). This pattern also held for the VB system (2.79, 2.40, and
2.57 DER respectively), but was reversed for the system with
0.75s subsegments (3.83, 4.17, 2.73). As suggested above, the
DER differences might be due to gendered voice acoustics, con-
versation structure (e.g., the rate of turn changes), or both.

3.3. Conversation structures and speaker pairs

To separate the effects of conversation structures from speaker
voices, the systems were evaluated on a version of the corpus
constructed using the procedure in §2. One hundred fifty con-
versations were drawn randomly from Fisher, including 50 in
which the original two speakers were both female, 50 in which

the original two speakers were both male, and 50 mixed-gender
conversations. For each conversation, a structure was extracted
by taking the original sequence of segments, with each segment
labeled with its duration and a speaker role (A, B, or silence),
with no turn overlap.

Independently, we drew a random sample of 300 speakers
with at least 2 minutes of audio each. We selected American
English speakers raised in California who were ages 20–30. We
chose this demographic to maximize dialect homogeneity given
the limited (meta)data in Fisher. This naturally limits our con-
clusions to this demographic within this corpus. These speakers
were randomly re-paired into 50 same-gender female pairs, 50
same-gender male pairs, and 50 mixed-gender pairs.

3.4. Conversation design

A simulated version of Fisher was created based on the sam-
ples of conversation structures and speaker pairs. The three
kinds of structures (same-gender female, same-gender male,
and mixed-gender) were crossed with the three kinds of speaker
pairs (same-gender female, same-gender male, and mixed) to
guarantee independence of conversation structure and speaker
gender. For every unique combination of structure and speaker
pair, two mirror versions of the conversation were created by
assigning each speaker in the pair to each of the two roles in the
structure, as described in §2.

The original audio of the transcribed utterances for each
speaker was extracted. Each transcribed utterance was re-seg-
mented to remove silences and breath noises using a pre-trained
voice activity detection model from [16], then concatenated to-
gether into one continuous speech stream per speaker. The seg-
ments in each conversation version were then filled in by copy-
ing audio from the appropriate speaker’s audio stream for the
specified segment duration, with a 0.01 second volume taper at
the beginning and end of each segment to avoid audio artifacts.
If one or both speakers did not have enough original audio to fill
all of their assigned segments in a structure, the structure was
truncated to the maximum length such that both speakers could
take both roles. This produced 45,000 simulated conversations
(150 pairs × 150 structures × 2 versions), each 2–13 minutes

3.5. Scoring

The systems were tested on the simulated conversations and
scored using the US NIST SCTK md-eval.pl script with no
forgiveness collar around speaker boundaries. To focus only on
between-speaker confusions involving the core diarization sys-
tem, we provided oracle segmentation [17, 1, 14].

Per-speaker F1 scores were calculated for each conversa-
tion assuming optimal mappings between the reference and hy-
pothesized system speakers. The scores for each speaker were
then averaged over the two versions of each conversation that
they they participated in (see §2), resulting in one F1 score per
speaker per pair per structure. We analyze F1 scores here, rather
than DER, so that we can test the difference in accuracy be-
tween the female and male speaker within a mixed-gender con-
versation (see §2).

3.6. Results

Figure 1 shows median speaker F1 in the simulated corpus. To
test the accuracy differences to perceived speaker gender, the
median F1 was calculated for each of the speaker pairs, aver-
aging over the 150 structures. Median F1 was lower for the 50
female pairs than the 50 male pairs for all three systems, even



Figure 1: Median F1 scores for each combination of speaker
voice gender, structure gender, and speaker pair gender.

though all of the speaker pairs had been remixed into the same
conversation. This difference is significant for the baseline sys-
tem (∆F1 = 0.003, p = 0.029 by Mann-Whitney test) and the
VB system (∆0.002, p = 0.0002), but not the 0.75s subseg-
ment system (∆0.0007, p = 0.410).

Additionally, the median F1 was calculated for the female
voices in the mixed-gender pairs and compared to the male
voices in the mixed-gender pairs. This difference was not sig-
nificant (p = 0.11, 0.15, 0.34). Thus, while there was evi-
dence that accuracy is different for female and male voices in
same-gender pairs for 2/3 systems, there was no evidence for a
difference in mixed-gender pairs.

Next, the median F1 was calculated for each of the 150
structures, averaging over all 150 speaker pairs. Median F1 was
lower when the original conversation had two female speak-
ers than when it had had two male speakers, regardless of the
speaker voices that had been remixed into the conversation.
The difference was significant for the baseline system (∆0.011;
p = 0.016) and the VB system (∆0.001; p = 0.049), but not
the 0.75s subsegment system (∆0.003; p = 0.155). Notably,
the baseline system with long subsegments has an F1 loss asso-
ciated with conversation structure that is an order of magnitude
larger than (i) the loss associated with speaker voices and (ii)
the loss for the short-subsegment system, as predicted in §3.1.

4. Experiment 2: CALLHOME languages
Diarization systems are often used for multiple languages. As
with gender, both acoustics and differences in turn-taking style
might lead to accuracy differences between languages. The pro-
cedure was the same as §3 except as described below.

4.1. Evaluation data

The three systems described in §3.1 were evaluated on
the language-specific CALLHOME-6 datasets (LDC97S42–
43, LDC97S45, LDC96S34–35, LDC96S37, LDC97T14–19),
which include partial transcriptions of 100–120 conversations

Table 1: Median DER aggregated by conversation with over-
lapped speech omitted (upper panel) and subsegment speaker
entropy (lower panel) for each original CALLHOME-6 subset.
Key: ar: Egyptian Arabic (70 conversations), en = American
English (109), de = German (82), jp = Japanese (99), zh =
Mandarin (57), es = Spanish (71).

ar en de jp zh es

1.50 sec 7.48 6.51 5.79 12.90 6.69 6.39
0.75 sec 7.72 6.44 7.27 12.60 6.60 7.73
VB 5.41 4.93 4.60 9.05 4.86 5.14

1.50 sec 0.10 0.07 0.10 0.17 0.07 0.11
0.75 sec 0.07 0.06 0.07 0.12 0.06 0.07

for six languages.
The upper panel of Table 1 shows DER for the subset of

two-speaker conversations. DER is substantially worse for the
Japanese set, which could be due to differences in conversation
style. For example, [18, 19] suggest that Japanese conversations
involve shorter gaps between utterances and substantially more
short backchannels than American English ones. Both patterns
could reduce accuracy due to more speech subsegments that in-
clude multiple speakers (§3.1), which will interfere with cluster
estimation even when these subsegments are not scored.

To quantify this, the lower panel of the table shows the av-
erage speaker entropy during subsegments of 1.5 seconds and
0.75 seconds within each set. Values closer to 0 means that most
subsegments contained only one speaker; closer to 1 means that
most subsegments were evenly divided between two speakers.
The Japanese set has substantially higher entropy than the other
sets, though shorter subsegments reduce the differences.

However, higher DER could also be caused by speaker
embedding biases [20, 21], as only two of 12 corpora in the
embedding model training set [22] have any Japanese speech
(LDC2011S05, LDC2011S08), and these two include less than
2% Japanese conversations. To evaluate whether the differences
in DER among the six datasets can be attributed to acoustic fea-
tures or to differences in conversational style, we simulated con-
versations in which the speaker audio comes from one language
set (e.g., Japanese) and the conversation structure comes from
another language set (e.g., German), for all factorial combina-
tions of audio and structure language.

4.2. Sample and experiment design

For each language set, we selected a random sample of 20 pairs
of female speakers, 20 pairs of male speakers, and 20 mixed-
gender pairs from the original corpus. We selected the original
speaker pairs rather than re-pairing speakers as in Experiment 1,
which ensures that speakers within each language are uniformly
selected from the at-home and abroad sets, and only selected
pairs where both were listed as having the same accent to help
minimize dialect differences. For some sets, there were <20
pairs per gender group meeting the criteria.

The conversation structure and speaker audio was extracted
for each pair, following the procedure used for Fisher in Exper-
iment 1. Each conversation structure was rebuilt with spliced
audio from every speaker pair of the same gender across the six
languages. For example, the 20 conversation structures from
the female Egyptian Arabic pairs were each simulated using the
audio from every female pair in all six languages. This pro-



Figure 2: Median DERs for speaker pairs (upper) and conversa-
tion structures (lower) in the simulated CALLHOME-6 corpus,
marginalizing over structures (upper) or speaker pairs (lower),
with the six languages weighted equally. Key in Table 1.

duced ∼86,400 simulated conversation versions ([∼20 pairs ×
6 languages] × [∼20 structures × 6 languages] × 3 genders ×
2 versions), each 1–13 minutes.

4.3. Results

Figure 2 shows median DERs for the speaker pairs from each
language (upper panel; averaging over all conversation struc-
tures) and for the conversation structures from each language
(lower panel; averaging over all speaker pairs). Notably, the
Japanese structures have substantially higher DER than struc-
tures from the other languages, particularly for the baseline
model. However, when the Japanese speaker pairs are remixed
into the same conversation structures as the other speakers, DER
is not much higher for the Japanese speakers than the others.

To test these differences, we first calculated the median
DER for each speaker pair separately for each model, averag-
ing over all of the structures. We fit a quantile regression to
predict median DER from the speakers’ language, gender, and
the model. We calculated the marginal posterior differences
in DER between the speakers’ languages with 95% Bayesian
credible intervals (CIs) using [23, 24, 25]. When conversation
structure is held constant, the estimated differences between the
speakers’ languages are small, at most ∆DER = 0.53 between
languages for the baseline model, ∆0.69 for the 0.75s subseg-
ment model, and ∆0.44 for the VB model.

Next, we calculated median DER for each conversation
structure, averaging over the speaker pairs from all of the lan-
guages. We fit a quantile regression to predict DER from the
original language of the conversation structure, the original gen-
der, and the model, following the same procedure. The es-
timated marginal differences between the structures are much
larger, up to ∆DER = 4.99 for the baseline model, ∆2.99
for the 0.75s subsegment model, and ∆1.60 DER for the VB
model. The largest pairwise differences all involved Japanese

(baseline: 4.20–4.99 DER; 0.75s: 2.19–2.99; VB: 0.90–1.60),
and all CIs involving Japanese structures indicated 95%+ prob-
ability that the Japanese structures had greater DER than others.

The small marginal DER differences with respect to the au-
dio, combined with the large differences with respect to con-
versation structure, together indicate that the DER differences
between the CALLHOME-6 language sets for this model are
driven mostly by different turn-taking styles, not acoustics.

5. Discussion
We proposed simulating conversations in a factorial design that
makes conversational structure independent of speaker voice
characteristics, and showed that a baseline diarization model
has better accuracy for both the male voices and male conversa-
tion structures than the female ones in the Fisher Corpus. The
differences between female and male conversation structures
were much larger than the marginal differences between female
and male voices. We also found that differences in conversation
structure in the CALLHOME-6 sets are associated with large
differences in diarization accuracy (up to 4.99 DER), but that
differences in accuracy between the language sets are small (up
to 0.69 DER) when the conversation structure is held constant.

For the Fisher conversations, reducing the subsegment
length from 1.5s to 0.75s shrank the marginal accuracy differ-
ences between the female and male conversation structures by
an order of magnitude, as did training directly on the distribu-
tion of speaker changes (VB; though this did not improve accu-
racy differences due to voices). Similarly, the Japanese conver-
sation structures were associated with significantly higher DER
than the other conversation structures, but this was improved
with shorter subsegments and HMM sequence training.

By design, our study is constrained to estimating marginal
outcomes for a subset of the gender and language groups in
two specific datasets. Individuals vary substantially in conversa-
tional style, and gendered and language-related styles will vary
across other conversational contexts. More generally, though,
models which assume that input speech subsegments do not
span turn boundaries will have lower performance for speakers
that take shorter turns, backchannel more, or have shorter gaps
between turns [3, 4]. As we illustrated, these disparities can be
partially mitigated by using shorter subsegments, which leads
to a lower proportion of subsegments that span turn bound-
aries (Table 1, lower panel). This highlights the importance of
turn-taking structure in understanding and improving diariza-
tion error profiles: if a model is not trained or tuned on conver-
sation structure, structure-related accuracy problems cannot be
improved with more or better training data. Model designs such
as UIS-RNN [26] and end-to-end sequence models [2, 27, 28]
thus offer more opportunities to reduce between-group accuracy
disparities with careful data selection.

Our illustrated example focused on cluster assignment er-
rors produced by a subsegment-based model. However, the
method that we proposed can be applied to analyze the error
profiles of any class of diarization model, including errors due
to segmentation or other system components [3, 17]. Because
the method requires only a specially-constructed dataset, it can
be used equally to evaluate other diarization components [29] or
end-to-end systems that are otherwise resistant to introspection.
Future work might also further explore the relationship of con-
versation characteristics with accuracy by manipulating specific
conversation characteristics in synthetic structures, such as the
rate of turn changes, amount of speaker overlap, and number of
speakers [3, 4, 7].
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